
Copyright © 1999, Regenstrief Institute for Health Care. All Rights Reserved.

Technology Independent Communication Model.
Gunther Schadow

Regenstrief Institute for Health Care, Indianapolis

Revision 1.0, 6/29/1999

Introduction
This paper is submitted in response to the last ITS phone conference call and the call for proposals about the messaging
model (homework.) Core pieces of this proposal have been written in response to a discussion about message routing
here in the Regenstrief Institute. HL7 message routing is traditionally quite complex. Its complexity is in part due to
HL7 version 2 not taking any strong position in how messages are addressed, delivered, and how one should respond to
messages.

Many HL7 implementations have assumed a broadcast messaging style. The reason for this development might be
found in specific needs of networked health care applications, but it may also be due to the coincidences of (a) HL7
being an incomplete specification and (b) the growing popularity of Interface Engines, used to fill in where HL7 was
unspecified. Since Interface Engines are pretty expensive, it was economical to install one Interface Engine per
institution and to form a single star-shaped logical network around the Interface Engine. All responsibility for
interoperable communication was pushed to the Interface Engine and its administrators, resulting in applications that
often implement HL7 in a very superficial way, and that are not even intended to interoperate without an Interface
Engine.

As HL7 is being redesigned to cover where HL7 v2 failed to be specific, this is the time to rethink our principles of
message routing from the beginning. The goal is to come up with a simple, rationalized and manageable
communication model, that is nonetheless powerful enough to explain the many functions currently performed by
Interface Engines. A side-effect of this redesign work may be that the conglomerate of disparate services called
“Interface Engine” may be broken up into logically coherent components. Each component could be dedicated to a
special task. A technology independent communication model would describe interfaces to those components.

This paper is divided into two major parts. The first part sets forth six “Principles” of communication. And discusses
two alternative approaches to message routing, the “bulletin board style” and the “letter style.” The second part will
describe message routing modes and services that would be used in practice.

Principles
(1) The atomic unit of communication is a message.
(2) Every message has one and only one sender.

So far, everyone seems to agree. Now, there are two alternative paradigms of messaging passing: (A) the bulletin board
and (B) the letter

A. Bulletin Board Style
The sender throws a message on a table (or pins it onto a bulletin board) and everyone can come by and can take notice
of the message or ignore it as needed. The bulletin board style is also called “broadcast.”

The advantage of broadcasting is that the sender does not need to think about who should read his message. You use
broadcast if everyone should know about the message.

In my opinion, broadcast is not an acceptable way to deal with confidential healthcare information, no matter how
weak the privacy legislation currently is in this country. In fact, however, the U.S. governmental actions on
confidentiality and privacy are getting stronger, and HL7 must react to them.

Even without concerns about confidentiality and privacy, the bulletin board style of messaging is computationally quite
inefficient. If everyone just throws messages out on the table, everyone who is looking for some information has to
search all messages to find what he is looking for. I guess those of us who seldom clean up their desks and offices

Technology Independent Communication Model Gunther Schadow

2 © 1999, Regenstrief Institute

know from experience how resource consuming such a messy table can be. Those of us who run a more tidy office
may know even better, otherwise they wouldn’t spend time tidying up.

Anyhow, I admit that there are cases where a sender might not want to know in advance who is going to receive the
message, and I’ll take care of that in just a second.

B. Letter Style
The sender sends the message to exactly one receiver.

The letter style is also called “unicast” (in contrast to “multicast” and “broadcast.”)

Letters can be forwarded, and letters can be copied. Copies of the same letter can be sent to multiple recipients, but
every letter has exactly one recipient.

The disadvantage of a letter is that you have to determine a recipient before you can send the letter to anyone.

But letters are not just delivered to single human beings. You can write a letter to an organization, not knowing who
will end up reading the letter in that recipient organization. You can write a letter to Santa Claus, in which case it ends
up in the office of some postmen with a good heart (the Santa Clause clearinghouse.) You can write a letter to a radio
station, in which case your message might even get broadcast. If you put a package in the U.S. mail box without any
address, it will end up in the dead letter office, and someone is going to open the package to find out who the recipient
might be, if only to send the package back to you. All this is possible with letter style messaging.

Everything that you can do with the bulletin board style you can also do with letter style. The difference is that with
bulletin board style you do not have destination addresses at all. With letter style every message has one destination
address, but through forwarding and copying you can do very flexible message routing, forwarding, multicast,
broadcast. In fact, the bulletin board style of messaging is just a special case of the letter style: messages are addressed
to a bulletin board service, but they still are addressed. The plain bulletin board style is in fact not providing anything
special, it just denies that messages have receiver addresses.

More Principles
(3) Every message has one and only one recipient.

For the following discussion I’ll use a special notation to talk about messages:

A Message M is a triple M = 〈X, s, r〉, with X being the information “payload” of the message, s being the sender of the
message, and r being the recipient of the message.

Example: If Alice knows she wants to send some information X to Bob, she will send the message

M = 〈X, Alice , Bob 〉

(4) Information in messages can be copied and sent as other messages to other recipients.

Example: If Alice knows she wants to send some information X to Bob and Charlie, she will make two messages:

M1 = 〈X, Alice , Bob 〉

M2 = 〈X, Alice , Charlie 〉

(5) Messages can be forwarded to other recipients.

Example: Alice sent the message M = 〈X, Alice , Bob 〉 to Bob. Instead of processing the message M himself, Bob
forwards the message M to Charlie by creating the message

M’ = 〈〈X, Alice , Bob 〉 , Bob , Charlie 〉.

Gunther Schadow Technology Independent Communication Model

© 1999, Regenstrief Institute 3

Through forwarding we can define partial addresses or undefined addresses.

Example: If Alice wants to send information X to the Department of Defense (DoD), she will create the message

M = 〈X, Alice , DoD〉.

The message will go to the DoD. The DoD is an organization and a message can not be read by an entire organization.
What happens is that DoD will have a clearinghouse for incoming messages, and some unknown individual recipient
working in DoD’s clearinghouse will find another recipient to forward the message to. But this process is transparent to
Alice. She sent her message to DoD which is all she cares about.

If we combine message copying and forwarding, we can design all kinds of interesting services, including massive
multicast (broadcast).

A sender might use a special recipient Unknown who can forward a message to any other recipient that is deemed
interested in either what the sender of the message has to say or in the content of the message independently from the
sender or both. On every message

M = 〈X, s, Unknown 〉

The Unknown service thus determines the set of recipients R as a function of the sender s and the content X of the
message:

R = f(s, X)

and sends one message Mi = 〈X, s, ri〉 for each ri ∈ R.

I view the recipient Unknown as an entity that provides a special service, the recipient determination service.

Example: If Alice wants to advertise her new business, she sends a message M0 = 〈X, Alice , Bob 〉 to Bob. Bob is a
marketing guy, who implements the recipient determination service. Bob can determine a set of recipients R = {r1, r2,
…, rn} to which he sends the advertisement messages:

M1 = 〈M0, Bob , r1〉

M2 = 〈M0, Bob , r1〉

…

Mn = 〈M0, Bob , rn〉

If Bob is a smart marketing guy, he can determine the list of recipients that might have an interest in Alice's
advertisement. If Bob is not smart, or if Alice advertises for toothpaste, Bob will just forward to everyone he knows.

That said, here is my last principle:

(6) A recipient may well ignore a message.

Conclusion
If we think of messaging in the bulletin board style, we have no control about where information goes. If we think of
messaging in the letter style, we can control the delivery process precisely, but we can also accommodate the need for
unknown recipients as well as multicasting and broadcasting.

Application
In the ITS conference call we identified four different scenarios that we want to cover:

1. Sender knows the recipient and wants the (confidential) message to be sent to only that recipient (e.g., referral or
discharge message between two physicians, immunization registry update, etc.)

2. Sender does not know the recipient because it is a complex decision to find out the appropriate recipient (e.g., who
is the filler for blood digitoxin level analysis, depending on time of day, day of week, priority, etc?)

3. Sender knows one primary recipient (e.g., order placer), but sender also knows, and agrees, that there may be one
or more other receivers (e.g. trackers, like repository, accounting system), with legitimate interest in the message.

Technology Independent Communication Model Gunther Schadow

4 © 1999, Regenstrief Institute

4. Sender does not know any specific receiver but rather broadcasts the message to everyone (e.g., master ADT
update system sending out registration messages to all sub-systems.)

The actual set of use-cases we talked about on the phone was more stylized and less specific. The number of four cases
were constructed from the following schema with two dimensions, that generates four use cases. The dimensions are:
(1) multiplicity of recipients (rows) and (2) whether the recipients are known.

RECIPIENT known unknown

one 1 2

multiple 3 4

In addition we found there to be another dimension, i.e., whether acknowledgement messages (ACK) are sent. This
schema of three dimensions would create eight different use cases. However, the generation of use cases from purely
from technological properties is not very useful, since it analyzes the solutions before the problems. Furthermore, the
dimensions are not completely independent. Thus, I will handle the discussion about whether or not ACKs are used as
part of the above mentioned four use cases.

1 Determined Unicast.
Determined unicast means that the message is sent between exactly one sender and one recipient and the recipient
being determined at the sender’s system. This determination of the recipient may occur by various ways, such as

• statically configured recipient,
• recipient selected by the user,
• recipient selected by the sending application based on some internal logic.

This determined unicast is the simplest form of messaging, as it is directly explained by the first three of the above
mentioned principles. All other modes of addressing can be built based on this one.

The determined unicast should be the normal form to communicate confidential health patient information (and all
patient information is by default confidential.) This common sense requirement is reinforced by HIPAA regulations.
There should be little argument in HL7 that the default mode of communication should be confidential. Today’s
public-key based security mechanisms assume communication with known recipients to successfully use encryption.

A unicast communication establishes a logical association between a sender and a recipient. This logical association
need not be reflected by lower layer associations. However, the most straight forward way to implement logocal
associations is by lower lever associations of the same scope and extent. For example, when the TCP transport
protocol is used, the simplest way to map the logical association is by a physical connection that is used bidirectionally
and lives as long as message is exchanged.

Communication is subject to failure, unexpected events may occur, such as network problems, or the recipient might be
in a state in which it can not process a given message properly. Moreover, a message might not be in a form that it
could ever be processed by the recipient error. Since the sender of the message sends the message for the purpose of
successful communication of information and processes, it is always in the sender’s interest to know whether that
communication was successful, so that sender can initiate appropriate steps if the message failed. Hence, an ACK
message should always be expected. In unicast communication, ACK messages come with little additional cost, and
thus should always be used.

2 Non-determined Unicast.
There are cases where the sender does not know the recipient of a message. For example, a specific lab test may be
provided by multiple laboratories, each under different circumstances. There may be a chemistry lab operating at
normal business hours, a STAT lab available outside business hours, an ER lab available 24 hours a day (but with a
limited service catalog) and a research lab for very special tests. The recipient of a given lab test must be determined
on a case by case basis, depending on the following input values:

Gunther Schadow Technology Independent Communication Model

© 1999, Regenstrief Institute 5

• the sender: E.g., Ward may only use
normal and STAT lab, while OP, ICU
and ER should use the ER lab where
possible.

• the service: E.g., ER lab does blood
levels for Digitoxin, Digoxin, and
Gentamycin, while most of the other
blood levels for pharmaceuticals is
measured by the chemistry lab.

• the current time: E.g., chemistry lab at
normal business hours, STAT lab at
nights and weekends, ER lab all day
(if eligible.)

Other input values may be required to
determine a recipient, e.g., the patient and
it’s insurance (to select the expensive from
the cheap lab.)

In non-determined unicast, the recipient is
determined according to a business policy that takes into account arbitrary information and selects a recipient. The
kind of input variables is completely dependent on the business policy and may include any variable associated with a
given message transaction. It is hardly possible to determine a complete set of such variables in advance, independent
of application domain and independent of local business policies.
While there seems to be no way to separate routing relevant information from pure payload information, it is likely that
a decision can be made based on the complete message payload. In the examples above, for a test service order
message, all input variables are found in the message. However, there may be required information that is not given in
the message, such as the exact patient insurance plan and coverage items. Those information might need to be
requested from some other source, in order to determine the message recipient.

The policy based recipient determination may be such a complex task that it makes sense to implement it as a module
(also called “server” or “component”, depending on the fashion of the year.) Once implemented, the module can be
used by many clients. The module implements the Recipient Determination Service (RDS.) The service could be
accessed through a procedure call, whether local (library) or remote (server, ORB object.) Since policies are usually
determined at one point for a department or enterprise, it makes sense to implement the RDS as a remote service.

There are two principle ways in which the RDS can be used: pure address determination (Figure 1) and forwarding
(Figure 2.) Forwarding may include the ACK message, in which case the RDS becomes a proxy for the unknown
recipient (Figure 3.)

In deciding which mode of the RDS is
favorable we need to take two issues into
consideration: system engineering
suggests that the RDS be implemented as a
stand alone component. Our main task is
to find a recipient address, the actual
sending and receiving of the message
might better be done iby another system
component. Furthermore, by not handing
over the entire message to the RDS, it is
easier to contain the proliferation of
confidential data. The RDS client could
include in the payload X only the
information needed for the RDS to
determine a recipient, if this information
can somehow be predetermined.

The proxy mode is what most Interface

Figure 1: Interaction diagram for the Recipient Determination Service (RDS) in pure
address determination mode: the RDS has a special interface that takes the
message payload X and the sender address s as arguments and returns the
recipient. address r. The sender then creates the message, sends it to the recipient
just determined. The recipient returns an ACK to the sender’s address.

Figure 2: Interaction diagram for RDS in message forwarding mode: the RDS
receives the message and forwards it to the recipient r depending on information
found in the message M. The recipient then returns an ACK directly back to the
sender’s address s.

sender RDS unknown
recipient

Message M = 〈X, s, q〉

ACK MACK = 〈XACK, r, s〉

Message M’ = 〈M, q, r〉

sender RDS unknown
recipient

RDS request (X, s)

RDS response r

Message M = 〈X, s, r〉

ACK MACK = 〈XACK, r, s〉

Technology Independent Communication Model Gunther Schadow

6 © 1999, Regenstrief Institute

Engines implement today. RDS in proxy
mode allows the client application to get
away with a very dumb interface, such as,
send everything to the same Unknown
address.

However, a closer look at the use case
shows that a simple proxy, where the final
destination is transparent to the sender is
generally not enough. In the laboratory
example, the user at the sender’s system
needs to know which lab receives the
order, so that the specimen can be routed
accordingly. Given that a sensible
response is received from the lab that
accepts the order, the specimen can be
routed using the information found in the
response message.

The interface of the RDS service towards
the client is simple. I use Java language to define interfaces.1 The three modes of the RDS interface are reflected as
three different methods,

1. the pure address determination mode is reflected by determineRecipient ,

2. the forwarding mode is reflected by forwardToRecipient ,

3. and the proxy mode is reflected by mimicRecipient .

public interface RecipientDeterminator {

public
Address determineRecipient (Address sender , MEI payload)

throws IndeterminableRecipientException ,
BadAddressException ,
BadPayloadException ;

public
void forwardToRecipient (Address sender , MEI payload)

throws IndeterminableRecipientException ,
BadAddressException ,
BadPayloadException;

public
MEI mimicRecipient (Address sender , MEI payload)

throws IndeterminableRecipientException ,
BadAddressException ,
BadPayloadException,
NoResponseException,
RemoteException ;

}

The interface of the RDS administration side is much more difficult. It needs to have a way to describe RDS policies.
There is a precendence for such a policy evaluation design pattern, which is the access control service, e.g.

1 IDL would be more fancy, but as Wes points out from his CCOW experience, IDL has shortcomings, i.e. no
exceptions. True? In any case, it’ll be easy to convert this to IDL.

Figure 3: Interaction diagram for RDS in proxy mode: the RDS q receives the
message and forwards it to the recipient depending on information found in the
message M. The recipient returns the ACK back to the RDS who forwards the ACK
back to the original sender s.

sender RDS unknown
recipient

Message M = 〈X, s, q〉

ACK MACK = 〈M’ACK, q, s〉

Message M’ = 〈M, q, r〉

ACK M’ACK = 〈XACK, r, q〉

Gunther Schadow Technology Independent Communication Model

© 1999, Regenstrief Institute 7

CORBAmed’s Healthcare Resource Access Control (HRAC.) It is tempting to push the complete definition of a
policy definition framework out of the project’s scope, such as done by HRAC. However, the problem remains that the
policy definition is then not standardized, and what’s worse, the interface between any “policy definition language” and
the information used as arguments to the service by the client is undefined. Therefore, we should include a RDS policy
definition and administration framework in our specification. The good news is that it’s feasible without introducing
too many new and unrelated “features” into our ITS suite.

In case that the information contained in the RDS request is not enough for the RDS to determine the recipient, the
RDS may call other services while finding recipients.

In non-determined unicast there is still only one recipient even though that recipient might not be known. There is no
reason for a message to be sent to multiple recipients to fulfill its purpose. There may be business reasons for trackers,
however, those are not associated with the support of the immediate transaction. For example, an order message needs
to be received by the filler who should be able to fulfill the order regardless of the repository and the billing system
having also intercepted the order message.

3 Broadcast.
Technically and traditionally there are two variants of multicast: broadcast and multicast using multicast groups.
Multicast groups are sets of entities (represented by their addresses) that are recipients of a multicast message.
Multicast is thus the “subscribe and publish” model. The essence of a broadcast and a “subscribe and publish” model is
that the originator of a message does not himself care for who is going to receive that message.

Obviously there are confidentiality concerns to be raised against any kind of multicast/broadcast approach.
However, there may be business use cases that are best modeled using multicast anyway. In those case, the
multicasting/broadcasting service must make sure that confidentiality policies are applied and no information is
given away in a nilly-willy manner. This adds significant complexity to the multicast/broadcast approach which
significantly discounts the usefulness of this entire approach.

As Figure 4 shows, in multicast and broadcast, a “caster” will forward messages to all the recipients in the multicast
group. There is no order among the recipients and the multicast group, and the messages M1, M2, …, Mn, could be
sent all at the same time. In true broadcast it is up to a recipient to “tune in to the channel;” conversely in multicast with
multicast groups the channel has a saying in who is a member of the multicast group. Apart from this minor difference,
multicast and broadcast are the same.

Figure 4: Multicast and broadcast. A “caster” forwards the incoming message M to every recipient who is a member in
the multicast group. There is no order among the recipients and the multicast group, and the messages M1, M2, …, Mn,
could be sent all at the same time. In true broadcast it is up to a recipient to “tune in to the channel;” conversely in
multicast with multicast groups the channel has a saying in who is a member of the multicast group. Apart from this
minor difference, multicast and broadcast are the same. Acknowledgements are usually suppressed in
multicast/broadcast communication, however, the caster could also implement a store-and-forward service to track
ACKs and re-send messages after a time out and to record errors from recipients.

sender caster recipient 2

Message M = 〈X, s, c〉

recipient 1

Message M1 = 〈M, c, r1〉

no ACK

Message M2 = 〈M, c, r2〉

no ACK

recipient n…

Message Mn = 〈M, c, rn〉

no ACK

Technology Independent Communication Model Gunther Schadow

8 © 1999, Regenstrief Institute

Acknowledgements are usually suppressed in multicast/broadcast communication, however, the caster could be capable
and patient enough to track ACKs and re-send messages after a time out or record errors from recipients. The re-send
feature itself is not unique to a caster, but is useful in many other circumstances. We will describe the store-and-
forward service in a sections below. However in multicasting we may have different requirements for ACKs:

1. Don’t care if receivers get the messages (broadcast: recipients may or may not be “tuned in”) no ACKs used.

2. All recipients of a multicast group must receive the message for the entire transmission process to finish. In that
case, the sender will be blocked until the last ACK has arrived or until a time-out is reached. The ACK returned to
the sender will be a consolidated ACK, reflecting either everyone’s responses (questioner) or a statistical abstract
of responses (voting.)

3. At least one member of the multicast group must have acknowledged the message, the first ACK is returned to the
sender.

4. Exactly one member of the multicast group must have acknowledged the message (the early bird gets the deal.)
The first ACK is returned to the sender, a two phase commit protocol is necessary: first phase is bidding, second
phase is commit, sent only to one of the responders.

5. The responder offering “the best conditions” gets the deal (bidding.) Any condition on the application layer
information may select one (or more) parties in the multicast group. It gets arbitrarily complex, thorough use cases
are required.

In any of these cases, except for the very first case, multicasting requires an intelligent service. Bulletin board style
messaging is will only buy you a true broadcast, no conditions such as “all”, “at least one”, “at most one”, “best
condition” will be provided by just a bulletin board. Thus, a multicast broker service (MBS) is in order.

Part of the multicast broker service is recipient determination and could use a recipient determination service RDS
similar to the RDS defined above. The difference is that the Multicast Recipient Determination Service (MRDS)
returns a set of recipient addresses, not just one.

public interface MulticastRecipientDeterminator {

public
set <Address > determineRecipients (Address sender , MET payload)

throws BadAddressException ,
BadPayloadException ;

}

Just like the RDS, the MRDS will evaluate policy rules to find out who is in a given multicast group. In case where we
have named multicast groups, each multicast group could be represented by a separate instance of the MRDS. For
example:

MulticastRecipientDeterminator aDTGroup;
MulticastRecipientDeterminator masterFileGroup;

/* assign the appropriate instances to the MRD variables */

. . .

set<Address> aDTRecipients = aDTGroup.determineRecipients(myself, aDTMessage);

set<Address> masterFileRecipients = masterFileGroup.determineRecipients(
myself, masterFileMessage);

The Multicast Broker Service (MBS) will use the MRDS but will in addition handle all the forwarding and ACK
handling:

public interface MulticastBroker {

Gunther Schadow Technology Independent Communication Model

© 1999, Regenstrief Institute 9

public
void sendToAny (Address sender , MEI payload)

throws BadAddressException ,
BadPayloadException;

public
MEI sendToAll (Address sender , MEI payload)

throws IndeterminableRecipientException ,
BadAddressException ,
BadPayloadException,
NoResponseException,
RemoteException ;

public
MEI sendToAtLeastOne (Address sender , MEI payload)

throws IndeterminableRecipientException ,
BadAddressException ,
BadPayloadException,
NoResponseException;

public
MEI sendToOne (Address sender , MEI payload,

SelectionCriteria s)
throws IndeterminableRecipientException ,

BadAddressException ,
BadPayloadException,
NoResponseException,
RemoteException ;

}

Specifying the selection condition will be similarly difficult as specifying the recipient policy and will be discussed in a
separate section below.

4 Multicast with a primary recipient.
In this section, however, we will discuss a
very special case of multicast: multicast
with a primary recipient, or, in other
words, unicast with “lurkers.” In principle
a unicast with lurkers or multicast with
primary recipient is like a mixture of
unicast and multicast.

Obviously there are confidentiality
concerns to be raised against any kind
of multicast/broadcast approach.
However, there may be business use
cases that are best modeled using
multicast anyway. In those case, the
multicasting/broadcasting service must
make sure that confidentiality policies
are applied and no information is given
away in a nilly-willy manner. This adds
significant complexity to the
multicast/broadcast approach which

Figure 5: Multicast with a primary recipient in the simplest form is just a sender
forwarding all messages to the trackers ti. Just like with unicast messaging, we
expect an ACK from the primary recipient r. We do not expect ACKs from the
tracker q, since we do not want the tracker to interfere with our business, and since
there may be multiple trackers.

sender tracker i recipient

Message M = 〈X, s, r〉

ACK MACK = 〈XACK, r, s〉

Message M’i = 〈M, s, ti〉

no ACK

no ACK

ACK M’I,ACK = 〈MACK, s, ti〉

Technology Independent Communication Model Gunther Schadow

10 © 1999, Regenstrief Institute

significantly discounts the
usefulness of this entire
approach.

The paradigmatic use case for
the unicast-with-trackers
model is a billing system that
tracks order entry
communication to determine
costs and charges, or a
repository that tracks any
event involving the electronic
medical record. Practically
those things as “repository”
and a “billing tracker” have
become quite popular over the
last decade; the reason being,
again, deficiencies of systems
and standards that made this
architecture favorable. In my
opinion, there is nothing
inherently useful in a

repository that just sits there and hopes to get relevant information through intercepting other recipient’s messages, or a
billing system that figures out bills from lurking on the wire. In my world, if you want to populate a useful
comprehensive data base, you send transactions to it deliberately and specifically. And, if you want to make a bill, you
make a bill. But my opinions on that notwithstanding, this section will show what is needed.

Figure 5 shows the interaction diagram of a very simple feed for trackers. In the most primitive case, the originator of a
transaction will forward every message to all the trackers. This is straight forward, but it requires every system to do
the forwarding to all the trackers by themselves.

If the systems are going to be relieved of the duty to forward messages to the trackers, one can use a “caster” as shown
in Figure 6. The caster is a special mode of an MBS where policy rules determine a primary recipient, or where the
client determines a primary recipient.

public interface TrackerBroker extends MulticastBroker {

public
MEI sendTo (Address sender , MEI payload, Address recipient)

throws BadAddressException ,
BadPayloadException,
NoResponseException,
RemoteException ;

}

The sendTo method would send the MEI to the recipient, but would also forward messages to trackers, as
determined through the Multicast Recipient Determination Service (MRDS.)

The ACK policy between sender and primary recipient should be as usual, i.e. ACKs should be used. However, in the
simple model design of Figure 5 the trackers would not send ACKs back to the sender, since the sender is not going to
re-send messages to the trackers. The trackers have a “lurker” status and it is the sole responsibility of the lurker to
intercept the messages and to figure out what they mean. This is not to suggest that a repository or billing tracker are
second order systems. There is always the option to feed a repository or a billing system with genuine messages
designed for the business purpose of the repository or billing system.

The “caster” of Figure 6 can be extended to deal with ACKs from the trackers and to re-send messages in case a tracker
was down. These are the modes of the Multicast Brokerage Service. In most cases, the Tracker Broker will apply the

Figure 6: Multicast with a primary recipient using a “caster” c which is an active component
“bumped into the wire” that copies all messages to a trackers ti. The caster will not change the
real messages M and MACK between sender and recipient in any way. Thus the caster behaves
just like a communication channel, with the only difference being intentional lurkers. There can be
multiple trackers.

sender caster recipient

Message M = 〈X, s, c〉

ACK M’ACK = 〈XACK, r, c〉

Message M’i = 〈M, c, ti〉

no ACK

tracker i

no ACK

ACK M’I,ACK = 〈M’ACK, c, ti〉

ACK MACK = 〈M’ACK, c, s〉

Message M’ = 〈M, c, r〉

Gunther Schadow Technology Independent Communication Model

© 1999, Regenstrief Institute 11

Multicast Broker’s toAny method to broadcast to the trackers, however, other methods might be selected through the
policy rules.

Whether the “caster” deals with ACKs from the trackers or not, a tracker’s ACK will be different from a primary
recipient’s ACK. For instance, and order message will result in a special order response from the filler system, in
which a filler order number is assigned, and in which the filler will at least indicate whether or not he can possibly
fulfill the requested services. Thus, the placer will expect the filler to send exceptions, such as a “service not available”
exception. By contrast, the tracker’s will never throw such exceptions. The only exception one would expect from a
tracker are “message syntax” error and – if ACKs are expected – no response would indicate that the message has not
yet been received and may need to be resent.

Thus, a recipient of the same message type may behave differently based on its role. A primary recipient will always
send an application layer response, while a tracker will send a different kind of ACK or no ACK at all. The question is,
how does a system know it’s role with regard to a given incoming message? There are two principle answers:

• The role is configured in the system.

• The role is communicated in the message.

For a tracker that just sits there and lurks is not supposed to say anything (think of a spy that secretly listens to a
conversation, he will not say “ah yes, now I understand what you’re saying!”) However, just like the caster can be
configured to accept ACKs, the caster could make slight changes to a message to indicate that the recipients of that
message are supposed to assume the tracker role. There may be strong feelings for or against any one of these options,
I think, that both of them may make sense. Thus, we should note the requirement to send the expected role in the
message header. A section below will summarize message header requirements that result from this discussion.

Policy Definitions
The Recipient Determination Service (RDS), the Multicast RDS, the Multicast Broker Service (MBS) and the Tracker
Broker Service (TBS) require policy rules to be defined. Policy rules can be configured in two ways:

1. statically by a system administrator
2. dynamically trough subscribe messages (publish and subscribe)

even if policies are updated dynamically through subscribe messages, a static policy framework is required to evaluate
subscription requests for eligibility.

An obvious option we have here is to leave the policy definition undefined, so that every vendor can do what he
pleases. Subscription messages, however, need to be standardized or dynamic subscription will not be interoperable.

Another obvious alternative is to define some policy “language,” to express policy rules. A Prolog based language
could be a useful candidate. Prolog is used in security policy definitions. Note that there is an obvious similarity
between access control policies defined by “security people” and recipient determination policies defined by
“messaging people.” CEN TC251 uses the term “Distribution Rules” to mean both. Access control policy define
which access requests are eligible to be served, where recipient determination policies define where information is
pushed, even without a request. And finally, a subscription request is just another form of access request.

The CORBAmed Healthcare Resource Access Control (HRAC) service defines a framework for evaluating access
requests. HRAC, however, chose to declare all the difficult issues out of their scope, so that the end product is only
less than a half step towards a workable and interoperable access control service. In particular, HRAC refused to
define policy specification and HRAC refused to define what resources are exactly. Where policy rules are not
specified at all by HRAC, resources, and entities are all abstracted to the level of plain symbols. I think we want to do
a little more.

Since our task is not as general as HRAC, and since HL7 defines all the information and messages which we deal with,
we should be able to take a larger bite out of the policy administration problem. I suggest the following anti-cyclic
approach:

• do not assume a separate and unrelated policy definition language

Technology Independent Communication Model Gunther Schadow

12 © 1999, Regenstrief Institute

• keep the scope narrow to message distribution rules, don’t try to deal with printer access requests or other
services not defined by HL7.

Thesis: we can define most policy rules by simply reusing message elements.

Mark Tucker will know what I mean, when I say things like “query by example” or “instance graph patterns.”

Any rule has two parts, the “if” part and the “then” part. For address determination rules, the “then” part is one address
(RDS) or a set of addresses (MRDS) for eligible recipients. The “then” part of the SelectionCriteria of the
method MulticastBroker.sendToOne is a simple command “select this one.” The Tracker Broker Service may
select a specific kind of Multicast Broker mode, which I do not care about at this point.

The “if” part of all the rules can be a Message Element Instance (MEI) prototype. A simple MEI prototype would be a
normal MEI. The (M)RDS would match the message payload (including the sender’s address in the MSH) against the
MEI prototype. If there is a match, the rule would be satisfied and the “then” part returned. If the match fails, the next
rule would be tested. If no rule matches, the RDS throws the IndeterminableRecipientException while
the MRDS returns an empty set. Likewise the SelectionCriteria of the method
MulticastBroker.sendToOne is a sequence of “if” parts with any match resulting in a positive evaluation of
the selection criteria.

The simple MEI as an MEI prototype is often not enough. For example, instead of testing for a specific date, we may
want to ask for the date being in a certain set (e.g., within normal business hours.) Much of these tasks can be
supported using our new version 3 data type system, which defines sets, ranges, and soon will define modulus sets for
dates to express business hours.

In addition we could use elements known from Prolog to allow for even more complex rules. MEI prototypes could
contain variables which would be bound to actual values found in the message payload under consideration. Those
variables could then be examined separately and across different MET components.

This section could use a few examples, but for now, I just refer to literature on the principles of Prolog (i.e.
“unification”) to submit that such RDS policy rules can be specified by heavily reusing MEIs. Note that I refer to the
principles of Prolog, not suggesting we should be using Prolog the language.

The dynamic subscription to a multicast group could also be handled by MEI prototypes. The subscriber would request
to be forwarded all messages that match a given MEI prototype. The MBS would match the MEI prototype against the
access control rules and if it finds a match between the access control rules and the MEI prototype would grant the
subscription request by adding a new entry in the MRDS rule base.

Requirements for HL7 v3 Message Headers
This is what I think we need to have in version 3 Message Headers:

• MANDATORY Original sender address (TIL)

• MANDATORY Designated receiver address (TIL)

• MANDATORY Message routing path, is sequence of 〈timestamp (PT), sender address (TIL), receiver address
(TIL) 〉

• OPTIONAL Return path (a routing path for returns) DEFAULT reversed message routing path,

• OPTIONAL Suggested recipient role selector (CV, e.g. primary recipient, tracker) DEFAULT primary recipient

• OPTIONAL ACK policy mode selector (CV, e.g., return application ACK, return accept ACK) DEFAULT return
application ACK)

• MANDATORY Event code (CV)

• MANDATORY Event timestamp (PT)

• OPTIONAL Event description (FTX)

• OPTIONAL Event reason code (CD, argh, what’s the code systems?)

